

GOIZUETA BUSINESS SCHOOL

The Linkage between Primary and Secondary Markets for Eurozone Sovereign Debt

Alexander Eisl (WU Vienna), Christian Ochs (WU Vienna), Nikolay Osadchiy (Emory), Marti G. Subrahmanyam (NYU Stern) *Presentation at the MSOM iFORM SIG* June 30, 2019

Motivation

- Sovereign bonds are an important safe asset class:
 - As a significant part of many investors' portfolios
 - As a proxy for risk free rates, i.e., the yield curve
 - For managing economic risk, i.e., as a hedging tool
- As a consequence of these economic functions, sovereign bond markets in the Eurozone, as in many countries, are typically transparent and liquid.
- > Yet, bond yields exhibit predictable movements around times of an auction.
- Main contribution of this paper: we rationalize the so called auction cycle for a set of Eurozone countries and identify its key drivers.

Why is this relevant?

- Auction cycles occur in the secondary market, yet depressed prices on the secondary market affect the auction bidding, thus auction cycles translate to the increased cost of debt.
- Price change is a consequence of supply-demand mismatch. Thus, can we uncover the underlying mechanism? N.Osadchiv

Primary and secondary sovereign debt markets are interlinked:

- Sovereign bond markets across the Eurozone are typically designed around the services of primary dealers.
- Primary dealership is a privileged status for market participants with benefits and obligations, and this system is adopted to different extents by several countries.
- Primary dealers may participate in **bond auctions** on their own account, for later resale, or directly on behalf of their clients.
- ▶ In return, they are required to provide secondary market liquidity as market makers.
- Thus, bond auctions can have broad implications across securities held by primary dealers (and other investors).

- Fleming and Rosenberg (2008, Fed WP) show that primary dealers are compensated for their inventory risk (due to their participation in bond auctions) by approporiate asset returns *over time*, i.e., they mostly buy on their own accounts.
- Lou et al. (2013, RFS) document auction cycles for US Treasuries and find hidden issuance costs for the sovereign; Beetsma et al. (2016, JFI) find similar evidence for the Eurozone; however, their results are not consistent across countries, and bonds with different characterstics.
- While Duffie (2010), JF suggests that yields may suddenly decline after an auction due to capital immobility; Sigaux (2016, ECB WP) relates price decreases before an auction to the uncertainty about net-supply.
- Brunnermeier & Pedersen (2008, RFS) suggest that liquidity cycles may move prices away from fundamentals; Comerton-Forde et al. (2010, JF) empirically show that market-maker inventories affect market conditions.

<ロ> <用> <用> < => < => < => < => <000</p>

A common motivation for auction cycles is limited **risk bearing capacity**, and **imperfect capital mobility**.

However, the primary dealers also have inventory and funding constraints:

- Dealers have existing inventory, and may:
 - Have to adjust their inventory
 - Engage in costly hedging activities
 - Start rebalancing/hedging before an auction, since it may be time consuming
- > Dealers are **funding constrained** and:
 - Have to free up inventory to be able to bid in an auction
 - Face funding costs that determine their capability to raise capital
 - Face regulations that affect funding costs

Research Question

Can the inventory considerations of primary dealers explain auction cycles?

Specifically, we address the following questions:

- Can we find evidence that the auction cycle is **impacted by**:
 - Opportunity costs,
 - Financing costs,
 - Capital constraints,
 - Demand volatility?
- Which mechanism underlies the supply-demand mismatch that leads to auction cycles?
- Empirically, how do auction cycles vary across bonds and countries?
- What factors explain differences in the auction cycles?

- ► Two-period model t = 0, 1 with two bonds i = 0, 1, adaptation of the capacitated newsvendor model of Hadley and Whitin (1963)
- ► At time t = 0, a primary dealer is endowed with an inventory of Q₀^e bonds, which are indexed by i = 0.
- At time t = 1, a new bond with index i = 1 is issued (more specifically: retapped) by the government at price c₁, while p₁^{bid} ≤ c₁ ≤ p₁^{ask}.
- ▶ We assume that the dealer has to consider its overall (regulatory) capital constraint *R* at a cost-of-capital of *w_i*.
- The dealer finances all positions at the overall funding cost *l*, i.e., the rate for buying/ holding one unit of bond 0,1.
- ► The market demand *D_i* of bond *i* is uncertain, i.e., let *f_i*, *F_i* denote the density and cumulative distribution function.

- ▶ The dealer has to **allocate the inventory** to *Q*₀ units of the old bonds, and *Q*₁ units of the newly issued bonds.
- At time t = 1 the old bond can be bought at p₀^{ask} and sold at p₀^{bid}, i.e., outside market-making in need of immediacy.
- ► The underage costs U_i represent the forgone profit when the vendor has too little inventory of bond i:
 - Old bond: $U_0 = p_0^{ask} p_0^{bid} Ip_0^{bid}$
 - New bond: $U_1 = p_1^{ask} c_1 lc_1$
- The overage costs *E_i* represent the **costs of holding too much inventory** of bond *i*:
 - Old bond: $E_0 = p_0^{bid} p_0^{bid} + lp_0^{bid} = lp_0^{bid}$
 - New bond: $E_1 = c_1 p_1^{bid} + lc_1$
- Economically, the total costs are **compensated by** the bid-ask spread:

$$U_i + E_i = p_i^{ask} - p_i^{bid} = s_i$$

Problem Definition

The dealer would like to optimize the expected profit, which can be rewritten as:

$$\max_{Q_i,i=1,2} \sum_{i} (U_i + E_i) \int_0^\infty \min(Q_i, x) f(x) dx - E_i Q_i,$$
(1)
s.t.
$$\sum_{i} w_i Q_i \le R.$$

- The dealer maximizes her market-making profits minus the expected cost of a shortage / excess of inventory.
- Our model produces the optimal inventory allocation of the old- and newly issued bonds Q₀, Q₁.
- ► Lower Q₀ implies a greater likelihood for the liquidation of the old bonds, i.e.. a greater yield increase and greater amplitude of the auction cycle.

Optimal Allocation

The solution to the optimal allocation problem is given by:

$$Q_{i} = F_{i}^{-1} \left(\frac{U_{i} - \lambda w_{i}}{E_{i} + U_{i}} \right),$$

$$R \ge \sum_{i} w_{i} Q_{i}$$
(2)

- If the capital constraint is binding, the Lagrange multiplier λ > 0 represents the shadow price of capital.
- We compare the **optimal level of inventory** for the bonds of the existing inventory, and the newly issued bonds: $\Delta = \frac{U_1 - \lambda w_1}{E_1 + U_1} - \frac{U_0 - \lambda w_0}{E_0 + U_0}$
- If ∆ ≥ 0, the newly issued bond has a weakly greater optimal level of inventory than the old bonds, i.e., there is a greater amplitude of the auction cycle.

Non-Binding Capital Constraint

If the capital constraint is not binding, the optimal inventory is determined in the following ways:

- ► $\frac{dQ_i}{dU_i} \ge 0$,
- ► $\frac{dQ_i}{dE_i} \leq 0$,
- $\frac{dQ_i}{d\sigma_i} \ge 0$, if and only if $U_i \ge E_i$,
- All cross-derivatives are zero.

Typically, the dealer has a **preference to participate in the auction** due to high U_1 . Thus, there may be a higher optimal level of Q_1 that may be amplified by σ_1 . We generally consider **capital constraints to be binding** for the average market participant. This case, however, is considerably more complex!

Binding Capital Constraint

If the capital constraint is binding, $f_i = Uniform[\underline{a}_i, \overline{a}_i]$, i.e., the expected demand $\mu_i = (\underline{a}_i + \overline{a}_i)/2$, and the standard deviation $\sigma_i = (\overline{a}_i - \underline{a}_i)/(2\sqrt{3})$ we need to evaluate $\frac{dQ_i}{dU_i}, \frac{dQ_i}{dE_i}, \frac{dQ_i}{d\sigma_i}$ based on:

$$Q_{i} = \mu_{i} + \sigma_{i}\sqrt{3}\frac{U_{i} - E_{i}}{E_{i} + U_{i}} + \frac{\frac{W_{i}}{E_{i} + U_{i}}\sigma_{i}}{\frac{w_{i}^{2}}{E_{i} + U_{i}}\sigma_{i} + \frac{w_{1-i}^{2}}{E_{1-i} + U_{1-i}}\sigma_{1-i}} \times$$

$$\times \left(R - w_{i}\mu_{i} - w_{1-i}\mu_{1-i} - w_{i}\sigma_{i}\sqrt{3}\frac{U_{i} - E_{i}}{E_{i} + U_{i}} - w_{1-i}\sigma_{1-i}\sqrt{3}\frac{U_{1-i} - E_{1-i}}{E_{1-i} + U_{1-i}}\right).$$
(3)

In the following, we make mild assumptions to assess this solution more comprehensively.

N.Osadchiy

For simplicity, we assume **typical cost structures** for the following propositions. The general case is presented in our paper.

Typical Cost Assumptions

- 1. $R = w_1 \mu_1 + w_0 \mu_0$, i.e., the capital is budgeted according to the expected demand μ .
- 2. $U_0 = E_0$, i.e., the overage and underage cost for the old bond are equal.
- 3. $U_1 \ge E_1$, i.e., the newly issued bond is weakly more lucrative than the bonds of the existing inventory.

Equivalently, in economic terms:

- On average, the dealers' budget constraint is binding. (Ass. 1)
- The mid-spread equals the funding cost, i.e., under perfect competition, there is no profit. (Ass. 2)
- ▶ Dealers have an incentive to participate in the auction. (Ass. 3)

Proposition 1: Funding Conditions

If the funding cost for the newly issued bond $w_1 > w_0 \frac{E_1 + U_1}{E_0 + U_0} = w_0 \frac{s_1}{s_2}$, then $\Delta \ge 0$, if and only if:

$$\lambda \le \tilde{\lambda} = \frac{\frac{D_1}{E_1 + U_1} - \frac{D_0}{E_0 + U_0}}{\frac{w_1}{E_1 + U_1} - \frac{w_0}{E_0 + U_0}}$$
(4)

- If w₁ > w₀ s₀/s₀, a smaller w₁ increases the threshold *λ̃* below which lower funding costs lead to higher inventory of the new bond.
- If $w_1 < w_0 \frac{s_1}{s_0}$, the dealer allocates all inventory to the **new issue**.
- Therefore, if the cost of capital, i.e., \u03c6 is high, it is optimal to maintain a higher level of inventory of the old bonds.

Propositions

Proposition 2: Costs and Inventory.

We assume typical case cost and f_i to be symmetric. Then, for the old issue bonds:

1. $\frac{dQ_0}{dU_0}$, $\frac{dQ_0}{dE_1} \ge 0$; 2. $\frac{dQ_0}{dU_1} \le 0;$ 3. $\frac{dQ_0}{dE_0} \leq 0$, if $w_1 \sigma_1 \leq w_0 \sigma_0 \frac{E_1 + U_1}{U_1 - E_1}$;

and for the new issue bonds

1.
$$\frac{dQ_1}{dE_1}, \frac{dQ_1}{dU_0} \le 0;$$

2. $\frac{dQ_1}{dU_1} \ge 0;$
3. $\frac{dQ_1}{dE_0} \ge 0$, if and only if $E_0 \ge \frac{1}{2} \frac{w_0}{w_1} \left(U_1 - E_1 - \frac{w_0}{w_1} \frac{\sigma_0}{\sigma_1} (E_1 + U_1) \right)$, suff. cond.
 $w_1 \sigma_1 \le w_0 \sigma_0 \frac{E_1 + U_1}{U_1 - E_1}.$

Thus, the effect for the overage cost only holds if the demand for the new bond is not too volatile - otherwise, there is a preference for the old bond! $(\square) \times (\square) \times (\square) \times (\square) \times (\square)$ N.Osadchiv

Proposition 3: Demand Volatility and Inventory.

We assume typical case cost and f_i to be symmetric. Then:

(i) **Old bond:**
$$\frac{dQ_0}{d\sigma_0} \leq 0$$
, $\frac{dQ_0}{d\sigma_1} \leq 0$;

- (ii) New bond: $\frac{dQ_1}{d\sigma_1} \ge 0$, $\frac{dQ_1}{d\sigma_0} \ge 0$.
 - Greater demand volatility for the **old bonds dampens** the auction cycle.
 - Greater demand volatility for the new bonds amplifies the auction cycle.
 - The result for the new bonds is due to their greater lucrativeness.

We collect an extensive data set on European secondary and primary bond markets for the time period from **April 2003 to December 2013** for **8 Eurozone countries**:

- ► Countries: Austria, Belgium, Germany, Spain, France, Italy, Netherlands, Portugal
- Auction results: Thomson Reuters, DMO websites
- Secondary markets: MTS markets, for the best three bid and ask prices on a high frequency level (binding quotes)
 - MTS Group (majority owned by LSEG) is one of Europes leading electronic fixed income trading markets, with over 500 unique counterparties and average daily volumes exceeding EUR 100 billion.
- Market characteristics: VSTOXX, EONIA, Euribor, 3M benchmark yields for each country
- Observations 3 million across bonds/countries over the total time horizon.

Bond Selection

Country	MTS Code	Bond Type	Description
Austria	ATS	Bills, Bonds	Government Bonds
Belgium	BTC	ZCB	Zero Coupon Bonds
Belgium	OLO	Bonds	Obligations Lineaires Ordinaires
France	BTA	Bills	Bons du Tresor
France	OAT	Bonds	Obligations Assimilables du Tresor
France	FCO	Bonds	Coupon Bonds
France	FTB	ZCB	Zero Coupon Bonds
France	TEC	Floater	Floating Rate Bond, 10-year OAT par yield
Germany	DEM	Bonds	Government Bonds (Bobls, Bunds)
Germany	GTC	Bills	Bubills
Italy	BOT	Bills	Buoni Ordinari del Tesoro
taly	BTP	Bonds	Buoni del Tesoro Poliannuali
taly	СТΖ	ZCB	Certificati del Tesoro Zero Coupon
Vetherlands	DSL	Bonds	Dutch State Loan
Netherlands	DTC	ZCB	Dutch Treasury Certificates
Portugal	PTC	Bills	Portugese Treasury Certificates
Portugal	PTE	Bonds	Portugese Government Bonds
Spain	BON	Bonds	Bonos del Estado
Spain	OBE	Bonds	Oblicaciones del Estado
Spain	LET	Bills	Letras del Tesoro

୬ ୍ ୧୦ 19 / 43

Country	Vol	BA	SD	AY	Mat	B2C	#Auctions	#Bonds	#Days
Austria	0.87	0.50	0.39	1.52	12.41	2.40	153	25	27.82
Belgium	1.12	0.08	0.08	0.17	3.03	2.18	840	177	5.16
France	2.44	0.09	0.10	0.06	2.99	2.75	1817	527	2.40
Germany	4.79	0.08	0.16	0.31	4.98	1.76	446	252	9.07
Italy	4.44	0.16	0.22	0.17	4.89	1.68	882	397	4.88
Netherlands	1.67	0.05	0.08	0.18	2.18	2.76	868	186	4.83
Spain	1.79	0.34	0.27	0.22	4.73	2.83	794	167	5.50
Portugal	0.83	0.36	0.16	0.65	2.39	2.69	352	98	12.02

Vol is the average auction volume in billion EUR, **BA** is the average bid/ask spread of the issued bond on the auction day in percent, **SD** is the standard deviation of the daily returns in percent, **AY** is the average yield in percent, **Mat** is the average maturity of the auctions in years, **B2C** is the bid-to-cover ratio, **#Auctions** is the number of auctions, **#Bonds** is the number of bonds auctioned, and **#Days** is the average number of business days between auctions.

We develop the following, empirically testable, hypotheses:

Hypothesis 1: Funding Conditions.

The amount of inventory that is liquidated, as well as the amplitude of the observed auction cycle, will be greater when:

- A) ... the shadow cost of capital of the average market participant, λ , as measured by FUNDL = EUROIS - Bund, is lower.
- B) ... the secured capital rates of the bonds, w_0 , w_1 , both measured by the 3M EUR-OIS (*CRATE*), are lower.
- C) ... the unsecured financing rate, *I*, as measured by the 3M EURIBOR (*BRATE*), is lower.

Hypothesis 2: Costs and Optimal Inventory.

The amount of inventory that is liquidated, as well as the amplitude of the observed auction cycle will be greater when

- A) ... the auctioned bond has a greater lucrativeness, $\frac{p_1^{bid} + p_1^{ask}}{2} c_1$, as measured by the spread between the mid-price quoted closest to the time of the auction and the auction price (*ASPREAD*).
- B) ... the auctioned bond has greater liquidity, $(p_1^{ask} p_1^{bid})$, as measured by the bid-ask spread of the auctioned bond (*ALIQ*).
- C) ... the old bonds have greater liquidity, $(p_0^{ask} p_0^{bid})$, as measured by the bid-ask spread of the bonds (*LIQ*), and its market average (*MLIQ*).

Hypothesis 3: Demand Volatility and Optimal Inventory.

The amplitude of the observed auction cycle will be greater when

- A) ... the volatility of demand of the auctioned bonds, σ_1 , as measured by the volatility of the bond's returns and in the market (*ARISK*) and the bond's maturity (*AMAT*), is greater.
- B) ... the volatility of demand of the old bonds, σ_0 , as measured by the volatility of old bond returns and in the market (*RISK*, *MRISK*), the bonds' maturity (*MAT*), the degree of risk-aversion in the market, i.e., the VSTOXX index (*RISKA*), is greater.

Hypothesis 4: Inventory Risk Management.

The amount of inventory that is liquidated, as well as the amplitude of the observed auction cycle will be greater when

- A) the anticipated increase in inventory risk exposure due to the auction, Q_1 , as measured by the volume issued at the auction (*AVOL*), is greater.
- B) the hedging capacities are greater, i.e., the basis risk, as measured by BRISK = Yield Bund, is lower.

To test these hypotheses, we specify a panel regression with fixed effects.

Dependent Variables

For each bond $i \in I$ over the [-5,0] day window leading up to an auction $a \in A$:

▶ *TVOL*_{*i*,*a*} (main variable) is the change in trading volume before an auction:

$$TVOL_{i,a} = \frac{\frac{1}{5} \sum_{d=-5}^{0} VOL_{i,(a+d)}}{\frac{1}{252} \sum_{d=-252}^{0} VOL_{i,(a+d)}}$$

 TIMB_{i,a} trading imbalance based on seller-initiated trades relative to buyer-initiated trades:

$$TIMB_{i,a} = \frac{\sum_{d=-5}^{0} VOL_{i,(a+d)}^{SELL}}{\sum_{t=-5}^{0} VOL_{i,(a+d)}^{BUY}} - 1$$

IMPR_{i,a}, price change calculated from the mid-price at d = 5 days before the auction to the exact time of the auction (in bp):

$$IMPR_{i,a} = \frac{\bar{p}_{i,(a+d)}}{p_{i,a}} - 1$$

N.Osadchiy

Summary Statistics: Variables

	Min	Q1	Median	Mean	Q3	Max
TVOL	0.00	0.70	1.50	2.10	2.90	22.40
TIMB	-1.00	0.00	0.50	0.40	1.00	1.00
IMPR	-34.00	-7.20	0.80	11.70	20.80	36.30
LIQ	0.00	2.10	8.00	20.70	23.90	143.80
ALIQ	0.00	5.40	15.00	30.00	35.40	525.40
ASPREAD	-100.60	0.00	0.20	0.20	0.40	102.80
ASIZE	0.10	0.90	2.00	2.50	3.30	16.60
MLIQ	1.80	13.40	29.60	37.70	44.50	457.60
RISK	0.00	0.00	0.20	0.40	0.50	15.30
ARISK	0.00	0.10	0.30	0.50	0.60	8.70
MRISK	0.00	0.20	0.30	0.40	0.50	11.70
AMAT	0.10	2.60	5.10	7.30	10.10	49.80
RISKA	11.90	18.50	22.30	24.40	27.00	87.50
CRATE	-0.40	0.00	0.30	0.90	2.00	4.30
BRATE	-0.30	0.20	0.70	1.20	2.10	5.10
FUNDL	-0.00	0.10	0.10	0.30	0.30	2.10
CRISK	-0.20	0.00	0.10	0.10	0.20	1.40
BRISK	-0.10	0.30	0.60	1.00	1.30	13.70

$$y_{a}^{i} = \boldsymbol{\alpha} \cdot D_{a}^{i} + \boldsymbol{\beta} \cdot X_{a} + \boldsymbol{\gamma} \cdot X_{a}^{i} + \boldsymbol{\delta} \cdot X_{a}^{j} + \epsilon_{a}^{i}$$

$$\tag{5}$$

- Fixed effects α: quartile of the bid-ask spread (Q.LIQ), return volatility (Q.RISK), and the issuing country of the observed bond, D.
- β specifies the coefficients with respect to overall market conditions X.
- γ denotes the coefficients with respect to characteristics of the "old" (retapped) bonds Xⁱ.
- δ are the coefficients with respect to the characteristics of the auctioned bond X^{j} .
- Standard errors e are clustered across maturities and auctions to account for yield curve dynamics and time periods.

Results: Full Sample (2003-2013)

	TVO	L	тім	в	IMP	R
Variable	Coefficient	p-value	Coefficient	p-value	Coefficient	p-value
Intercept	0.85	0.00	0.58	0.00	-0.32	0.01
Austria	-0.01	0.82	-0.03	0.49	-0.07	0.03
Belgium	1.08	0.00	-0.23	0.00	0.07	0.19
France	1.79	0.00	-0.09	0.02	0.02	0.60
Italy	1.79	0.00	-0.49	0.00	-0.04	0.49
Netherlands	1.54	0.00	-0.08	0.04	0.07	0.03
Portugal	0.51	0.00	-0.26	0.00	-0.06	0.35
Spain	0.92	0.00	-0.23	0.00	-0.20	0.07
Q1.LIQ	0.39	0.00	-0.06	0.00	-0.00	0.83
Q4.LIQ	-0.42	0.00	0.12	0.00	0.00	0.93
Q1.RISK	-0.41 0.00		0.09	0.00	0.01	0.60
Q4.RISK	0.18	0.02	-0.04	0.14	-0.15	0.01
LIQ	-0.00	0.46	-0.00	0.32	0.00	0.41
RISK	-0.11	0.07	0.02	0.08	0.26	0.00
CRATE	-0.13	0.00	-0.01	0.25	0.05	0.23
MAT	0.00	0.29	0.00	0.40	0.01	0.00
ASIZE	-0.08	0.00	-0.00	0.47	0.00	0.47
ASPREAD	0.01	0.05	-0.00	0.66	0.00	0.29
ALIQ	0.00	0.96	0.00	0.99	0.00	0.17
ARISK	0.11	0.00	-0.01	0.20	-0.01	0.53
AMAT	-0.01	0.00	-0.00	0.04	0.00	0.32
MLIQ	-0.00	0.00	0.00	0.85	-0.00	0.32
MRISK	0.17	0.05	-0.02	0.14	0.06	0.28
FUNDL	-0.24	0.07	0.01	0.59	-0.24	0.02
BRATE	-0.00	0.97	-0.02	0.75	0.55	0.11
BRISK	-0.13	0.00	0.04	0.00	0.06	0.28
RISKA	0.00	0.23	0.00	0.00	0.01	0.04

N.Osadchiy

	TVO	L	ТІМ	В	IMPR			
Variable	Coefficient	p-value	Coefficient	p-value	Coefficient	p-value		
Intercept	0.85	0.00	0.58	0.00	-0.32	0.01		
FUNDL	-0.24	0.07	0.01	0.59	-0.24	0.02		
BRATE	-0.00	0.97	-0.02	0.75	0.55	0.11		
CRATE	-0.13	0.00	-0.01	0.25	0.05	0.23		

- ▶ Greater funding rate, FUNDL, dampens the auction cycle (TVOL, IMPR).
- Greater capital rates, CRATE, dampens the auction cycle (TVOL).
- Standard errors of BRATE (borrowing rate) and CRATE may be inefficient due to their strong correlation, i.e., collinearity between two variables.
- We still control for both variables due to economic relevance and importance in our model.

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ </p>

TVOL			ТІМ	В	IMPR			
Variable	Coefficient p-value		Coefficient	p-value	Coefficient	p-value		
Intercept	0.85 0.00		0.58	0.58 0.00		0.01		
Q1.LIQ	0.39 0.0		-0.06	0.00	-0.00	0.83		
Q4.LIQ	-0.42	0.00	0.12	0.00	0.00	0.93		
LIQ	-0.00	0.46	-0.00	0.32	0.00	0.41		
MLIQ	-0.00	0.00	0.00	0.85	-0.00	0.32		
ASPREAD	0.01	0.05	-0.00	0.66	0.00	0.29		
ALIQ	0.00 0.96		0.00 0.99		0.00	0.17		

Results: Full Sample (2003-2013), H2

- Bonds with greater liquidity (low bid-ask spread) (Q1.LIQ) in the portfolio show greater auction cycle than less liquid bonds (Q4.LIQ).
- Overall market liquidity conditions (*MLIQ*) seem to play a minor role in determining the auction cycle.
- A greater auction spread (ASPREAD), i.e., the spread between the auction price and the auctioned (retapped) bond's secondary market price, amplifies the auction cycle (TVOL).
- There is no indication that the liquidity of the auctioned bond ALIQ affects the auction cycle. However, the auctioned bond is usually expected to be (temporarily) very liquid.

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ </p>

	TVO	L	ТІМ	В	IMPR		
Variable	Coefficient p-value		Coefficient	p-value	Coefficient	p-value	
Intercept	0.85	0.00	0.58	0.00	-0.32	0.01	
Q1.RISK	-0.41	0.00	0.09	0.00	0.01	0.60	
Q4.RISK	0.18	0.02	-0.04	0.14	-0.15	0.01	
RISK	-0.11	0.07	0.02	0.08	0.26	0.00	
MRISK	0.17	0.05	-0.02	0.14	0.06	0.28	
MAT	0.00	0.29	0.00	0.40	0.01	0.00	
RISKA	0.00	0.23	0.00	0.00	0.01	0.04	
ARISK	0.11	0.00	-0.01	0.20	-0.01	0.53	
AMAT	-0.01	0.00	-0.00	0.04	0.00	0.32	

- Bonds with greater volatility show a stronger auction cycle (*TVOL*) are more likely to be liquidated (*Q4.RISK*) than less risky bonds (*Q1.RISK*).
- Overall greater market volatility (MRISK) seems to contribute to an amplified auction cycle (TVOL)
- A greater **volatility** (*ARISK*) of the auctioned bond seems to amplify the auction cycle (*TVOL*).

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ = 臣 = のへで

	TVO	L	ТІМ	В	IMPR		
Variable	Coefficient	p-value	Coefficient	p-value	Coefficient	p-value	
Intercept	0.85	0.00	0.58	0.00	-0.32	0.01	
ASIZE	-0.08	0.00	-0.00	0.47	0.00	0.47	
BRISK	-0.13 0.00		0.04 0.00		0.06	0.28	

- Greater spreads between the benchmark yield and the German Bund yield (*BRISK*),
 i.e., the hedging basis risk, seem to dampen the auction cycle (*TVOL*).
- Basis risk seems to be an even more important determinant during/ in the aftermath the sovereign debt crisis, i.e., when this risk mattered most.
- We do not see an indication that the auction size (ASIZE) affects the auction cycle. Possibly, auctions are well anticipated and trading is carried out in advance?

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ </p>

Econo	Economic Cost of the Auction Cycle													
Country / Maturity	0-50Y	0-3Y	3-10Y	10-20Y	20-50Y									
Austria	11.20	4.30	7.70	13.70	29.40									
Belgium	12.00	2.00	14.40	36.80	34.80									
France	12.80	2.00	10.30	30.30	53.70									
Germany	2.80	1.70	1.60	2.70	11.30									
Italy	8.20	1.70	13.90	20.60	23.20									
Netherlands	7.10	1.10	10.40	31.70	12.60									
Portugal	20.10	5.20	33.80	21.40	49.30									
Spain	6.70	1.70	5.90	9.00	30.70									

The cost per year of maturity are calculated based on the return from buying the bond at the mid-price 5 days before the auction and selling it at the exact time of the auction (in bp). N.Osadchiy 37/43 The following drivers of auction cycle are supported theoretically and empirically:

- **Hypothesis 1:** Higher funding costs dampen the auction cycle.
- Hypothesis 2: Greater lucrativeness of the auction and greater liquidity of the old bonds amplify the auction cycle.
- > Hypothesis 3: Greater demand uncertainty of the old bond amplifies auction cycle.
- Hypothesis 4: Greater hedging capacities amplify the auction cycle (especially in times of distress).

What can the DMO do about the auction cycle?

- Maintaining a cash buffer may allow shifting volumes to later auctions if market conditions, i.e., funding cost, basis risk or market risk, are not beneficial.
- ► The issuance cost of a specific bond should be considered, i.e., the impact of the auctioned bond on secondary markets, in dependence of market conditions.

Thank you for your attention.

Comments/questions: nikolay.osadchiy@emory.edu The paper is available

Bond Selection

Country	MTS Code	Bond Type	Description
Austria	ATS	Bills, Bonds	Government Bonds
Belgium	BTC	ZCB	Zero Coupon Bonds
Belgium	OLO	Bonds	Obligations Lineaires Ordinaires
France	BTA	Bills	Bons du Tresor
France	OAT	Bonds	Obligations Assimilables du Tresor
France	FCO	Bonds	Coupon Bonds
France	FTB	ZCB	Zero Coupon Bonds
France	TEC	Floater	Floating Rate Bond, 10-year OAT par yield
Germany	DEM	Bonds	Government Bonds (Bobls, Bunds)
Germany	GTC	Bills	Bubills
Italy	BOT	Bills	Buoni Ordinari del Tesoro
Italy	BTP	Bonds	Buoni del Tesoro Poliannuali
Italy	CTZ	ZCB	Certificati del Tesoro Zero Coupon
Netherlands	DSL	Bonds	Dutch State Loan
Netherlands	DTC	ZCB	Dutch Treasury Certificates
Portugal	PTC	Bills	Portugese Treasury Certificates
Portugal	PTE	Bonds	Portugese Government Bonds
Spain	BON	Bonds	Bonos del Estado
Spain	OBE	Bonds	Oblicaciones del Estado
Spain	LET	Bills	Letras del Tesoro

ク Q (~ 40 / 43

Summary Statistics: Variables

	Min	Q1	Median	Mean	Q3	Max
TVOL	0.00	0.70	1.50	2.10	2.90	22.40
TIMB	-1.00	0.00	0.50	0.40	1.00	1.00
IMPR	-34.00	-7.20	0.80	11.70	20.80	36.30
LIQ	0.00	2.10	8.00	20.70	23.90	143.80
ALIQ	0.00	5.40	15.00	30.00	35.40	525.40
ASPREAD	-100.60	0.00	0.20	0.20	0.40	102.80
ASIZE	0.10	0.90	2.00	2.50	3.30	16.60
MLIQ	1.80	13.40	29.60	37.70	44.50	457.60
RISK	0.00	0.00	0.20	0.40	0.50	15.30
ARISK	0.00	0.10	0.30	0.50	0.60	8.70
MRISK	0.00	0.20	0.30	0.40	0.50	11.70
AMAT	0.10	2.60	5.10	7.30	10.10	49.80
RISKA	11.90	18.50	22.30	24.40	27.00	87.50
CRATE	-0.40	0.00	0.30	0.90	2.00	4.30
BRATE	-0.30	0.20	0.70	1.20	2.10	5.10
FUNDL	-0.00	0.10	0.10	0.30	0.30	2.10
CRISK	-0.20	0.00	0.10	0.10	0.20	1.40
BRISK	-0.10	0.30	0.60	1.00	1.30	13.70

N.Osadchiy

	TVOL	TIMB	IMPR	LIQ	ALIQ	ASPREAD	ASIZE	MLIQ	RISK	ARISK	MRISK	AMAT	RISKA	CRATE	BRATE	FUNDL	CRISK	BRISK
TVOL																		
TIMB	-0.29																	
IMPR	0.03	0.05																
LIQ	-0.03	0.03	0.12															
ALIQ	0.01	0.03	0.05	0.03														
ASPREAD	0.01	-0.01	0.01	0.00	0.01													
ASIZE	-0.07	-0.12	-0.03	-0.02	-0.06	-0.01												
MLIQ	0.00	0.00	0.00	0.00	0.00	0.00	-0.01											
RISK	-0.05	0.08	0.23	0.29	0.07	0.01	-0.08	0.00										
ARISK	0.03	0.06	0.10	0.09	0.13	0.03	-0.18	-0.01	0.28									
MRISK	-0.01	0.11	0.16	0.19	0.11	0.02	-0.16	0.00	0.49	0.43								
AMAT	0.04	0.03	0.02	-0.01	0.14	0.03	-0.35	-0.01	-0.02	0.19	-0.02							
RISKA	-0.01	0.09	0.13	0.09	0.09	0.00	-0.03	0.00	0.19	0.23	0.28	-0.01						
CRATE	-0.06	-0.08	-0.01	-0.02	-0.04	-0.02	0.16	0.00	-0.11	-0.17	-0.24	-0.08	0.02					
BRATE	-0.06	-0.06	0.01	0.01	-0.02	-0.02	0.14	0.00	-0.06	-0.10	-0.16	-0.08	0.19	0.98				
FUNDL	-0.03	0.07	0.11	0.12	0.09	-0.01	-0.02	0.00	0.19	0.24	0.29	-0.05	0.78	0.21	0.41			
CRISK	0.00	0.07	0.16	0.10	0.10	0.03	-0.1	0.00	0.24	0.29	0.37	0.03	0.62	-0.13	0.00	0.55		
BRISK	-0.04	-0.03	0.11	0.14	0.06	0.03	-0.02	0.00	0.32	0.27	0.49	-0.08	0.14	-0.36	-0.29	0.20	0.24	

Despite high correlation between *FUNDL* and *BRATE*, we decide not to omit an economically important variable at the risk of potentially producing greater standard errors for the two coefficients.

Results: Financial Crisis (2007-2009)

_	TVOL		ТІМВ		IMPR	
Variable	Coefficient	p-value	Coefficient	p-value	Coefficient	p-value
Intercept	0.48	0.07	0.65	0.00	-0.07	0.05
Austria	0.10	0.55	-0.09	0.26	-0.26	0.02
Belgium	1.16	0.00	-0.20	0.00	0.40	0.18
France	1.28	0.00	0.02	0.74	-0.06	0.46
Italy	1.51	0.00	-0.45	0.00	0.19	0.31
Netherlands	1.83	0.00	-0.03	0.35	0.27	0.06
Portugal	0.00	0.99	-0.19	0.09	-0.25	0.16
Spain	0.27	0.11	0.01	0.82	0.02	0.87
Q1.LIQ	0.42	0.00	-0.09	0.00	0.03	0.27
Q4.LIQ	-0.25	0.37	0.15	0.01	-0.08	0.59
Q1.RISK	-0.42	0.00	0.10	0.00	0.05	0.07
Q4.RISK	0.35	0.04	-0.05	0.00	-0.07	0.55
LIQ	0.00	0.65	-0.00	0.00	-0.00	0.07
RISK	-0.06	0.73	-0.10	0.18	0.62	0.01
CRATE	0.05	0.17	-0.02	0.07	-0.02	0.00
MAT	-0.00	0.84	0.00	0.62	0.01	0.42
ASIZE	-0.04	0.00	-0.00	0.71	-0.01	0.11
ASPREAD	-0.00	0.61	-0.00	0.71	-0.00	0.24
ALIQ	-0.00	0.00	-0.00	0.55	0.00	0.15
ARISK	-0.13	0.00	0.01	0.62	0.04	0.05
AMAT	-0.01	0.00	-0.00	0.63	-0.00	0.00
MLIQ	-0.00	0.11	-0.00	0.62	0.00	0.52
MRISK	-0.22	0.00	0.01	0.88	0.45	0.02
FUNDL	-1.05	0.00	0.09	0.34	0.22	0.09
BRATE	-0.63	0.07	-0.11	0.02	0.15	0.26
BRISK	-0.13	0.50	0.03	0.38	-0.06	0.72
RISKA	0.03	0.01	0.00	0.56	-0.01	0.20

N.Osadchiy

▲□▶▲□▶▲≡▶▲≡▶ ≡ のへの